CS 410/510: Advanced
Programming

Profiling in Haskell

Mark P Jones
Portland State University

What makes a good program?

€ Qualitative factors:
m Correctness

= Maintainability, readability,
understandability, portability, flexibility, ...

= Use of appropriate abstractions and idioms

€ Quantitative factors:

s Performance, Predictability, ...
= Time, Memory, Disk, Bandwidth, ...

Understanding Program Behavior:

@ High-level languages abstract away from the
underlying machine

@ This can make it very difficult to understand what
is happening when a program executes

€ Analytic techniques can predict asymptotic trends

€ Hard to model complexities of memory, timing,
stack, cache, disk, buffers, network, latencies,
bandwidth, concurrency, branch prediction, ...

Profiling Tools:

€ Two broad approaches:
= Instrumentation
= Sampling

€ Standard Advice:

= Focus on writing qualitatively good code first

= Once that's working, use profiling tools to
identify performance hot-spots and obtain
quantitatively good code

Form Follows

expr, term, atom :: Parser Int

expr = term "+" expr

| term "-" expr
| term

term = atom "*" term
| atom "/" term
| atom

atom "-Tatom

| Il(ll eXpl’ ll)ll
| number

Function;

-- return (I+r)
-- return (I-r)

-- return (I*r)
-- return (I div r)

-- return (negate x)
-- return n

Form Follows Function:

expr, term, atom :: Parser Int

expr = dol <-term; string "+"; r <- expr; return (I+r)
||| do | <-term; string "-"; r <- expr; return (I-r)
||| term
term = do | <- atom; string "*"; r <- term; return (I*r)
||| do | <- atom; string "/"; r <- term; return (1" div r)
||| atom
atom = do string "-"; x <- atom; return (negate x)

||| do string "("; n <- expr; string ")"; return n
||| number

Parsing Examples:

Parsing> parse expr "1+2"

[3]

Parsing> parse expr "(1+2) * 3"

[]

Parsing> parse expr "(1+2)*3"

[9]

Parsing> parse expr "((1+2)*3)+1"
[10]

Parsing> parse expr "(((1+2)*3)+1)*8"
[80]

Parsing> parse expr "((((1+2)*3)+1)*8)"
[80]

Parsing>

Execution Statistics in Hugs:

€ Mechanisms:

s Enable the collection of execution statistics
using :set +s

= Turn on messages when garbage collection
OCcurs using :set +g

s Change total heap size (when loading Hugs)
using hugs —hSize

€ Measures:
s Cells: a chunk of memory
= Reductions: a single rewrite step

Collecting Statistics:

Parsing> :set +s
Parsing> 1

1

(22 reductions, 32 cells)
Parsing> 2

2

(22 reductions, 32 cells)
Parsing> 3

3

(22 reductions, 32 cells)
Parsing> 1+2

3

(26 reductions, 36 cells)

Parsing> length "hello"

5

(56 reductions, 75 cells)
Parsing> length "world"
5

(56 reductions, 75 cells)
Parsing> id 1

1

(22 reductions, 32 cells)
Parsing> (\x -> x) 1

1

(23 reductions, 32 cells)
Parsing>

Observing Garbage Collection

Parsing> :set
TOGGLES: groups begin with +/- to turn options on/off resp.
s Print no. reductions/cells after eval

OTHER OPTIONS: (leading + or - makes no difference)
hnum Set heap size (cannot be changed within Hugs)

Current settings: +squR -tgl.QwkIT -h1000000 -p"%s> " -r$$ -c40

Parsing> length [1..200000]

{{Gc:979946} }{{Gc:979945} }{{GC:979947} }{{Gc:979946 } }{{Gc:
979947}}200000

(4200043 reductions, 5598039 cells, 5 garbage collections)
{{Gc:979983} }Parsing>

10

Observing Garbage Collection:

$ hugs -h100000 +gs

Hugs> length [1..200000]

{{Gc:86831}}{{Gc:86830} }{{Gc:86832} }{{Gc:86833}}{{Gc:86828}}...
{{Gc:86828}}{{Gc:86829} }{{Gc:86828} }{{Gc:86828}}200000

(4200054 reductions, 5598125 cells, 64 garbage collections)
{{Gc:86866} }Hugs> :qg

$ hugs -h8M +gs

Hugs> length [1..200000]

200000

(4200054 reductions, 5598125 cells)
{{Gc:7986866} }Hugs>:q

11

Observing Garbage Collection:

$ hugs -h26378

ERROR "/Users/user/local/lib/hugs/packages/hugsbase/Hugs/Prelude.hs
- Garbage collection fails to reclaim sufficient space

FATAL ERROR: Unable to load Prelude
$ hugs -h26379

Hugs> :set +sg
Hugs> length [1..200000]

{{Gc:13208} }{{Gc:13213} }{{Gc:13208} }{{Gc:13205} }{{Gc:13209} }...
{{Gc:13203}}{{Gc:13209}}200000

(4200054 reductions, 5598125 cells, 424 garbage collections)
{{Gc:13245} }Hugs>

12

Observations:

@ Note that: 100000 — 86866 = 13134 = 26379 — 13245

€ So we can conclude that Hugs:
s uses 13134 cells for internal state
s heeds at least 26379 cells to load

@ Possible profile of memory usage during startup:

13

Heap size, Residency, Allocation:

€ Heap size measures maximum capacity

€ Residency measures amount of memory
that is actually in use at any given time

@ Haskell programs allocate constantly (and,
simultaneously, create garbage)

€ Total allocation may exceed heap size

14

Back to Parsing:

Parentheses seem to be part of the problem, so let’s stress
test:

addParens n s = if n==0
then s
else "(" ++ addParens (n-1) s ++ ")”

Parsing> [addParens n "1" | n <-[0..5]]
[*17%,7(1)","((1))","(((1)))","((((1))))","(((((1)))))"]

Parsing>

15

Parsing> :set +s

Parsing> parse expr (addParens 1 "1")
[1] ¢
(15060 reductions, 20628 cells) counts
Parsing> parse expr (addParens 2 "1")

[1]

(137062 reductions, 187767 cells)

Parsing> parse expr (addParens 3 "1")

[1]

(1234954 reductions, 1691736 cells, 1 garbage collection)

Parsing> parse expr (addParens 4 "1")

[1]

(11115840 reductions, 15227127 cells, 15 garbage collections)

Parsing> parse expr (addParens 5 "1")

[1]

(100043656 reductions, 137045268 cells, 139 garbage collections)
Parsing>

Rapid increases in
reductions and cell

16

$ hugs -h26379 +sg

Hugs> :l altParsing.lhs

Parsing> :gc

Garbage collection recovered 6462 cells
Parsing> parse expr "1"

[1]

(1367 reductions, 1881 cells)
{{Gc:6304}}Parsing> parse expr (addParens 1 "1")
{{GC:6218} }{{Gc:6213} }{{Gc:6217}}[1]

(15073 reductions, 20665 cells, 3 garbage collections)
{{Gc:6281}}Parsing> parse expr (addParens 5 "1")

{{Gc:6044}}{{Gc:6072}}{{Gc:6066}}{{Gc:6076}}{{Gc:6072}}{{Gc:
6081} }{{Gc:6063} }{{Gc:6085}}{{Gc:6068} }{{Gc:6090} }{{Gc:6062}}...
{{Gc:6113}}{{Gc:6078}}{{GcNC:6048} }{Interrupted!}

Memory is not the
problem here:

(16505831 reductions, 22610720 cells, 3713 garbage collections)
{{Gc:6048} }Parsing>

17

Analysis (1):

160000000
140000000
120000000
100000000 ‘.
80000000 reductions
i cells
60000000
40000000
20000000
0
2 3 5
parens reductions cells
1 15060 20628
2 137062 187767
3 1234954 1691736
4 11115840 15227127 18
5 100043656 137045268

Analysis (2):

log reds

—@— |0g cells

parens
1

u A W N

reductions
15060
137062
1234954
11115840
100043656

cells
20628
187767
1691736
15227127
137045268

log reds
4,177824972
5.136917065
6.091650781
7.045942287
8.000189554

log cells

4.314457123
5.273619267
6.228332591

7.18261797

8.136864044

19

Why Exponential Behavior?

expr, term, atom :: Parser Int Recall this grammar ...
expr = dol <-term; string "+"; r <- expr; return (I+r)
||| do | <-term; string "-"; r <- expr; return (I-r)
||| term
term = do | <- atom; string "*"; r <- term; return (I*r)
||| do | <- atom; string "/"; r <- term; return (1" div r)
||| atom
atom = do string "-"; x <- atom; return (negate x)
||| do string "("; n <- expr; string ")"; return n
||| number

20

Matching "1" as an term:

@ First, we match it as a term ... and then find that it’s not
followed by a "+"

do | <- term; string "+"; r <- expr; return (I+r)

€ So then we match it again as a term ... and find that it’s
not followed by a "-"

do | <- term; string "-"; r <- expr; return (I-r)

€ Then, finally we can match it as a term without any
following characters

term

® So we will match "1" as a term three times before we
succeed ... or as an atom nine times ... or ...

21

Refactoring the Grammar:

expr, term, atom :: Parser Int

expr =dol <-term
do string "+"; r <- expr; return (I+r)

||| do string "-"; r <- expr; return (I-r)
||| return |

term = dol <-atom
do string "*"; r <- term; return (I*r)
||| do string "/"; r <- term; return (I div r)
||| return |

atom = ... as before ...

22

A Step Forward:

Parsing> :set +s

Parsing> parse expr (addParens 10 "1")

[1]

(3624 reductions, 6091 cells)

Parsing> parse expr (addParens 100 "1")
[1]

(42414 reductions, 83491 cells)

Parsing> parse expr (addParens 1000 "1")
[1]

(1321314 reductions, 3530491 cells, 3 garbage collections)
Parsing> parse expr (addParens 10000 "1")

(3899701 reductions, 11445375 cells, 12 garbage collections)
ERROR - Control stack overflow
Parsing>

23

Profiling with GHC:

@ GHC provides a much broader and more powerful
range of profiling tools than Hugs

@® We have to identify a main program:
module Main where

main = print (parse expr "(((((1)))")
@ Compiling: ghc --make altParsing.lhs

€ Running: ./altParsing +RTS —sstderr

@ Still slow!

24

$./altParsing +RTS -sstderr

[1]

848,494,732 bytes allocated in the heap
1,506,284 bytes copied during GC (scavenged)

0 bytes copied during GC (not scavenged)

24,576 bytes maximum residency (1 sample(s))

1619 collections in generation 0 (0.02s)

1 collections in generation 1 (0.00s)

1 Mb total memory in use

INIT time
MUT time
GC time

EXIT time

Total time

$GC time

Alloc rate

Productivity

0.00s (0.00s elapsed)
1.01s (1.03s elapsed)
0.02s (0.02s elapsed)
0.00s (0.00s elapsed)
1.03s (1.06s elapsed)
1.7% (2.3% elapsed)

836,673,373 bytes per MUT second

98.2% of total user, 96.0% of total elapsed 25

Profiling Options:

@ For more serious work, compile with the —

prof flag
ghc --ma
€ Opens up
= [Ime anc

ke -prof altParsing.lhs

nossibilities for:
allocation profiling

= Memory

orofiling

= Coverage Profiling

@ Profiling code has overheads; not for

production use

26

Cost Center Profiling:

@ A technique for distributing costs during program
execution

€ Programmer creates “cost centers”:
= by hand {-# SCC “name” #-}
= for all top-level functions: -auto-all

€ Program maintains runtime stack of cost centers
@ RTS samples behavior at regular intervals

€ Produce a summary report of statistics at the end

of execution
27

In Practice:

$ ghc --make -prof -auto-all altParsing.lhs
$./altParsing +RTS -p

[1]

$ Is

altParsing* altParsing.hi altParsing.lhs
altParsing.o altParsing.prof

$

28

Time and Allocation Profiling Report (Final)

altParsing +RTS -p -RTS

total time = 0.54 secs (27 ticks @ 20 ms)
total alloc = 803,275,236 bytes (excludes profiling

COST CENTRE MODULE $time %alloc
CAF Main 100.0 100.0
individual
COST CENTRE MODULE no. entries %$time %alloc
MAIN MAIN 1 0 0.0 0.0
CAF Main 154 19 100.0 100.0
CAF GHC .Handle 92 4 0.0 0.0

Alas, not a very insightful report,
in this case ...

overheads)

inherited
$time %alloc

100.0 100.0

100.0 100.0
0.0 0.0

29

Heap Profiling:

@ A technigue for measuring heap usage during
program execution

€ Compile code for profiling and run with argument
+RTS option where option is:
= -hc by function
= -hm by module

= -hy by type
= -hb by thunk behavior

@ Generates output.hp text file

@ Produce a graphical version using hp2ps utility
30

In Practice:

$ ghc --make —prof altParsing.lhs

$./altParsing +RTS -hc

[1]

$ Is

altParsing* altParsing.hi
altParsing.o altParsing.hp
$ hp2ps —c altParsing.hp

$ open altParsing.ps

$

altParsing.lhs

31

altParsing +RTS -hm 3,652 bytes x seconds Thu Mar 5 15:46 2009

(%]
Q
-
>

o]

2,200_

2,000

1,800

1,600

1,400 |

1,200 |

1,000

800 | B cHc.Handle

600
400

200

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 seconds

altParsing +RTS -hc

3,413 bytes x seconds

Thu Mar 5 15:36 2009

0.0 0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

seconds

B (154)Main.cAF

B ©2)GHC Handle.cAF

altParsing +RTS -hy

3,882 bytes x seconds

Thu Mar 5 15:37 2009

0.0 0.2

0.4

0.6

0.8

1.0 1.2

1.4

1.6

seconds

= >p

[_] BLACKHOLE
Clo

B rPap

. stg_ap_2_upd_info
- Parser

-

- Handle__

- ->Parser

I:l Buffer

|:| :TMonad

I weak

B vvar

[_] MUT_VAR_CLEAN
- Int

- Handle

B o

altParsing +RTS -hb 9,890 bytes x seconds Thu Mar 5 15:51 2009

bytes

2,000 |

1,800._

1,600

1,400

1,200 |

1,000

800

600 _

INHERENT_USE
400 | . _US

200

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 seconds

Biographical Profiling (-hb):
@ LAG phase: object created but not yet used

@ USE: objects is in use

@ DRAG: object has been used for the last time, but
is still referenced

€ VOID: an object is never used

36

Coverage Profiling:

@ Used to determine which parts of a program have
been exercised during any given run

@® Works by instrumenting code to get exact results

@ Provides two kinds of coverage:

s Source coverage
+ Yellow — not executed

= Boolean guard coverage
+ Green always true
* Red always false

37

In Practice:

$ ghc --make —fhpc altParsing.lhs

$./altParsing

[1]

$ Is

altParsing* altParsing.hi
altParsing.o altParsing.tix

$

altParsing.lhs

38

In Practice:

$ hpc report altParsing
33% expressions used (138/409)
0% boolean coverage (0/1)
100% guards (0/0)
0% 'if' conditions (0/1), 1 unevaluated
100% qualifiers (0/0)
66% alternatives used (4/6)
0% local declarations used (0/6)
54% top-level declarations used (18/33)

$

39

In Practice:

$ hpc markup al

tParsing

Writing: Main.hs.html

Writing: hpc_inc
Writing: hpc_inc
Writing: hpc_ind
Writing: hpc_inc

ex.html
ex_fun.html
ex_alt.html
ex_exp.html

$ open Main.hs.

Ntmll

$ open hpc_index.html

$

40

number
number

Parser

Int

= manyl digit
*** foldll (\a x -> 1l0*a+x)

Coverage of altParser:

parser that evaluates arithmetic expressions:

expr,

expr

term

atom

term,

do 1 <~
do 1 <~
term

do 1 <-
do 1 <~
atom

do string
do string

number

atom ::

term;
term;

atom;
atom;

n n

Parser Int

string
string

string
string

expr;
expr;

'
A
I

term;
term;

return
return

return
return

return (negate x)
return n

string ")";

(l+rxr)
(1-x)

(1*r)
(1°div'r)

41

Summary:

@ Profiling tools help us to understand the
complex operational behavior of code

@ Expert use of profiling tools requires
significant use and experience

@ But, even with limited experience, it is still
possible to gain some interesting into what
our programs really do!

42

