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What makes a good program?

€ Qualitative factors:
m Correctness

= Maintainability, readability,
understandability, portability, flexibility, ...

= Use of appropriate abstractions and idioms

€ Quantitative factors:

s Performance, Predictability, ...
= Time, Memory, Disk, Bandwidth, ...



Understanding Program Behavior:

@ High-level languages abstract away from the
underlying machine

@ This can make it very difficult to understand what
is happening when a program executes

€ Analytic techniques can predict asymptotic trends

€ Hard to model complexities of memory, timing,
stack, cache, disk, buffers, network, latencies,
bandwidth, concurrency, branch prediction, ...



Profiling Tools:

€ Two broad approaches:
= Instrumentation
= Sampling

€ Standard Advice:

= Focus on writing qualitatively good code first

= Once that's working, use profiling tools to
identify performance hot-spots and obtain
quantitatively good code



Form Follows

expr, term, atom :: Parser Int

expr = term "+" expr

| term "-" expr
| term

term = atom "*" term
| atom "/" term
| atom

atom "-Tatom

| Il(ll eXpl’ ll)ll
| number

Function;

-- return (I+r)
-- return (I-r)

-- return (I*r)
-- return (I div r)

-- return (negate x)
-- return n



Form Follows Function:

expr, term, atom :: Parser Int

expr = dol <-term; string "+"; r <- expr; return (I+r)
||| do | <-term; string "-"; r <- expr; return (I-r)
||| term
term = do | <- atom; string "*"; r <- term; return (I*r)
||| do | <- atom; string "/"; r <- term; return (1" div r)
||| atom
atom = do string "-"; x <- atom; return (negate x)

||| do string "("; n <- expr; string ")"; return n
||| number



Parsing Examples:

Parsing> parse expr "1+2"

[3]

Parsing> parse expr "(1+2) * 3"

[]

Parsing> parse expr "(1+2)*3"

[9]

Parsing> parse expr "((1+2)*3)+1"
[10]

Parsing> parse expr "(((1+2)*3)+1)*8"
[80]

Parsing> parse expr "((((1+2)*3)+1)*8)"
[80]

Parsing>



Execution Statistics in Hugs:

€ Mechanisms:

s Enable the collection of execution statistics
using :set +s

= Turn on messages when garbage collection
OCcurs using :set +g

s Change total heap size (when loading Hugs)
using hugs —hSize

€ Measures:
s Cells: a chunk of memory
= Reductions: a single rewrite step



Collecting Statistics:

Parsing> :set +s
Parsing> 1

1

(22 reductions, 32 cells)
Parsing> 2

2

(22 reductions, 32 cells)
Parsing> 3

3

(22 reductions, 32 cells)
Parsing> 1+2

3

(26 reductions, 36 cells)

Parsing> length "hello"

5

(56 reductions, 75 cells)
Parsing> length "world"
5

(56 reductions, 75 cells)
Parsing> id 1

1

(22 reductions, 32 cells)
Parsing> (\x -> x) 1

1

(23 reductions, 32 cells)
Parsing>



Observing Garbage Collection

Parsing> :set
TOGGLES: groups begin with +/- to turn options on/off resp.
s  Print no. reductions/cells after eval

OTHER OPTIONS: (leading + or - makes no difference)
hnum Set heap size (cannot be changed within Hugs)

Current settings: +squR -tgl.QwkIT -h1000000 -p"%s> " -r$$ -c40

Parsing> length [1..200000]

{{Gc:979946} }{{Gc:979945} }{{GC:979947} }{{Gc:979946 } }{{Gc:
979947}}200000

(4200043 reductions, 5598039 cells, 5 garbage collections)
{{Gc:979983} }Parsing>
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Observing Garbage Collection:

$ hugs -h100000 +gs

Hugs> length [1..200000]

{{Gc:86831}}{{Gc:86830} }{{Gc:86832} }{{Gc:86833}}{{Gc:86828}}...
{{Gc:86828}}{{Gc:86829} }{{Gc:86828} }{{Gc:86828}}200000

(4200054 reductions, 5598125 cells, 64 garbage collections)
{{Gc:86866} }Hugs> :qg

$ hugs -h8M +gs

Hugs> length [1..200000]

200000

(4200054 reductions, 5598125 cells)
{{Gc:7986866} }Hugs>:q
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Observing Garbage Collection:

$ hugs -h26378

ERROR "/Users/user/local/lib/hugs/packages/hugsbase/Hugs/Prelude.hs
- Garbage collection fails to reclaim sufficient space

FATAL ERROR: Unable to load Prelude
$ hugs -h26379

Hugs> :set +sg
Hugs> length [1..200000]

{{Gc:13208} }{{Gc:13213} }{{Gc:13208} }{{Gc:13205} }{{Gc:13209} }...
{{Gc:13203}}{{Gc:13209}}200000

(4200054 reductions, 5598125 cells, 424 garbage collections)
{{Gc:13245} }Hugs>
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Observations:

@ Note that: 100000 — 86866 = 13134 = 26379 — 13245

€ So we can conclude that Hugs:
s uses 13134 cells for internal state
s heeds at least 26379 cells to load

@ Possible profile of memory usage during startup:
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Heap size, Residency, Allocation:

€ Heap size measures maximum capacity

€ Residency measures amount of memory
that is actually in use at any given time

@ Haskell programs allocate constantly (and,
simultaneously, create garbage)

€ Total allocation may exceed heap size
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Back to Parsing:

Parentheses seem to be part of the problem, so let’s stress
test:

addParens n s = if n==0
then s
else "(" ++ addParens (n-1) s ++ ")”

Parsing> [ addParens n "1" | n <-[0..5] ]
[*17%,7(1)","((1))","(((1)))","((((1))))","(((((1)))))"]

Parsing>
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Parsing> :set +s

Parsing> parse expr (addParens 1 "1")
[1] ¢
(15060 reductions, 20628 cells) counts
Parsing> parse expr (addParens 2 "1")

[1]

(137062 reductions, 187767 cells)

Parsing> parse expr (addParens 3 "1")

[1]

(1234954 reductions, 1691736 cells, 1 garbage collection)

Parsing> parse expr (addParens 4 "1")

[1]

(11115840 reductions, 15227127 cells, 15 garbage collections)

Parsing> parse expr (addParens 5 "1")

[1]

(100043656 reductions, 137045268 cells, 139 garbage collections)
Parsing>

Rapid increases in
reductions and cell
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$ hugs -h26379 +sg

Hugs> :l altParsing.lhs

Parsing> :gc

Garbage collection recovered 6462 cells
Parsing> parse expr "1"

[1]

(1367 reductions, 1881 cells)
{{Gc:6304}}Parsing> parse expr (addParens 1 "1")
{{GC:6218} }{{Gc:6213} }{{Gc:6217}}[1]

(15073 reductions, 20665 cells, 3 garbage collections)
{{Gc:6281}}Parsing> parse expr (addParens 5 "1")

{{Gc:6044}}{{Gc:6072}}{{Gc:6066}}{{Gc:6076}}{{Gc:6072}}{{Gc:
6081} }{{Gc:6063} }{{Gc:6085}}{{Gc:6068} }{{Gc:6090} }{{Gc:6062}}...
{{Gc:6113}}{{Gc:6078}}{{GcNC:6048} }{Interrupted!}

Memory is not the
problem here:

(16505831 reductions, 22610720 cells, 3713 garbage collections)
{{Gc:6048} }Parsing>
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Analysis (1):

160000000
140000000
120000000
100000000 ‘.
80000000 reductions
i cells
60000000
40000000
20000000
0
2 3 5
parens reductions cells
1 15060 20628
2 137062 187767
3 1234954 1691736
4 11115840 15227127 18
5 100043656 137045268




Analysis (2):

log reds

—@— |0g cells

parens
1

u A W N

reductions
15060
137062
1234954
11115840
100043656

cells
20628
187767
1691736
15227127
137045268

log reds
4,177824972
5.136917065
6.091650781
7.045942287
8.000189554

log cells

4.314457123
5.273619267
6.228332591

7.18261797

8.136864044
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Why Exponential Behavior?

expr, term, atom :: Parser Int Recall this grammar ...
expr = dol <-term; string "+"; r <- expr; return (I+r)
||| do | <-term; string "-"; r <- expr; return (I-r)
||| term
term = do | <- atom; string "*"; r <- term; return (I*r)
||| do | <- atom; string "/"; r <- term; return (1" div r)
||| atom
atom = do string "-"; x <- atom; return (negate x)
||| do string "("; n <- expr; string ")"; return n
||| number
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Matching "1" as an term:

@ First, we match it as a term ... and then find that it’s not
followed by a "+"

do | <- term; string "+"; r <- expr; return (I+r)

€ So then we match it again as a term ... and find that it’s
not followed by a "-"

do | <- term; string "-"; r <- expr; return (I-r)

€ Then, finally we can match it as a term without any
following characters

term

® So we will match "1" as a term three times before we
succeed ... or as an atom nine times ... or ...
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Refactoring the Grammar:

expr, term, atom :: Parser Int

expr =dol <-term
do string "+"; r <- expr; return (I+r)

||| do string "-"; r <- expr; return (I-r)
||| return |

term = dol <-atom
do string "*"; r <- term; return (I*r)
||| do string "/"; r <- term; return (I div r)
||| return |

atom = ... as before ...
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A Step Forward:

Parsing> :set +s

Parsing> parse expr (addParens 10 "1")

[1]

(3624 reductions, 6091 cells)

Parsing> parse expr (addParens 100 "1")
[1]

(42414 reductions, 83491 cells)

Parsing> parse expr (addParens 1000 "1")
[1]

(1321314 reductions, 3530491 cells, 3 garbage collections)
Parsing> parse expr (addParens 10000 "1")

(3899701 reductions, 11445375 cells, 12 garbage collections)
ERROR - Control stack overflow
Parsing>
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Profiling with GHC:

@ GHC provides a much broader and more powerful
range of profiling tools than Hugs

@® We have to identify a main program:
module Main where

main = print (parse expr "(((((1)))")
@ Compiling: ghc --make altParsing.lhs

€ Running: ./altParsing +RTS —sstderr

@ Still slow!
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$ ./altParsing +RTS -sstderr

[1]

848,494,732 bytes allocated in the heap
1,506,284 bytes copied during GC (scavenged)

0 bytes copied during GC (not scavenged)

24,576 bytes maximum residency (1 sample(s))

1619 collections in generation 0 ( 0.02s)

1 collections in generation 1 ( 0.00s)

1 Mb total memory in use

INIT time
MUT time
GC time

EXIT time

Total time

$GC time

Alloc rate

Productivity

0.00s ( 0.00s elapsed)
1.01s ( 1.03s elapsed)
0.02s ( 0.02s elapsed)
0.00s ( 0.00s elapsed)
1.03s ( 1.06s elapsed)
1.7% (2.3% elapsed)

836,673,373 bytes per MUT second

98.2% of total user, 96.0% of total elapsed 25



Profiling Options:

@ For more serious work, compile with the —

prof flag
ghc --ma
€ Opens up
= [Ime anc

ke -prof altParsing.lhs

nossibilities for:
allocation profiling

= Memory

orofiling

= Coverage Profiling

@ Profiling code has overheads; not for

production use
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Cost Center Profiling:

@ A technique for distributing costs during program
execution

€ Programmer creates “cost centers”:
= by hand {-# SCC “name” #-}
= for all top-level functions: -auto-all

€ Program maintains runtime stack of cost centers
@ RTS samples behavior at regular intervals

€ Produce a summary report of statistics at the end

of execution
27



In Practice:

$ ghc --make -prof -auto-all altParsing.lhs
$ ./altParsing +RTS -p

[1]

$ Is

altParsing* altParsing.hi  altParsing.lhs
altParsing.o  altParsing.prof

$
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Time and Allocation Profiling Report (Final)

altParsing +RTS -p -RTS

total time = 0.54 secs (27 ticks @ 20 ms)
total alloc = 803,275,236 bytes (excludes profiling

COST CENTRE MODULE $time %alloc
CAF Main 100.0 100.0
individual
COST CENTRE MODULE no. entries %$time %alloc
MAIN MAIN 1 0 0.0 0.0
CAF Main 154 19 100.0 100.0
CAF GHC .Handle 92 4 0.0 0.0

Alas, not a very insightful report,
in this case ...

overheads)

inherited
$time %alloc

100.0 100.0

100.0 100.0
0.0 0.0
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Heap Profiling:

@ A technigue for measuring heap usage during
program execution

€ Compile code for profiling and run with argument
+RTS option where option is:
= -hc by function
= -hm by module

= -hy by type
= -hb by thunk behavior

@ Generates output.hp text file

@ Produce a graphical version using hp2ps utility
30



In Practice:

$ ghc --make —prof altParsing.lhs

$ ./altParsing +RTS -hc

[1]

$ Is

altParsing* altParsing.hi
altParsing.o  altParsing.hp
$ hp2ps —c altParsing.hp

$ open altParsing.ps

$

altParsing.lhs
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altParsing +RTS -hm 3,652 bytes x seconds Thu Mar 5 15:46 2009

(%]
Q
-
>

o]

2,200_

2,000

1,800

1,600

1,400 |

1,200 |

1,000

800 | B cHc.Handle

600
400

200

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 seconds




altParsing +RTS -hc

3,413 bytes x seconds

Thu Mar 5 15:36 2009

0.0 0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

seconds

B (154)Main.cAF

B ©2)GHC Handle.cAF




altParsing +RTS -hy

3,882 bytes x seconds

Thu Mar 5 15:37 2009

0.0 0.2

0.4

0.6

0.8

1.0 1.2

1.4

1.6

seconds

= >p

[_] BLACKHOLE
Clo

B rPap

. stg_ap_2_upd_info
- Parser

-

- Handle__

- ->Parser

I:l Buffer

|:| :TMonad

I weak

B vvar

[_] MUT_VAR_CLEAN
- Int

- Handle

B o




altParsing +RTS -hb 9,890 bytes x seconds Thu Mar 5 15:51 2009

bytes

2,000 |

1,800._

1,600

1,400

1,200 |

1,000

800

600 _

INHERENT_USE
400 | . _US

200

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 seconds




Biographical Profiling (-hb):
@ LAG phase: object created but not yet used

@ USE: objects is in use

@ DRAG: object has been used for the last time, but
is still referenced

€ VOID: an object is never used
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Coverage Profiling:

@ Used to determine which parts of a program have
been exercised during any given run

@® Works by instrumenting code to get exact results

@ Provides two kinds of coverage:

s Source coverage
+ Yellow — not executed

= Boolean guard coverage
+ Green always true
* Red always false

37



In Practice:

$ ghc --make —fhpc altParsing.lhs

$ ./altParsing

[1]

$ Is

altParsing* altParsing.hi
altParsing.o  altParsing.tix

$

altParsing.lhs

38



In Practice:

$ hpc report altParsing
33% expressions used (138/409)
0% boolean coverage (0/1)
100% guards (0/0)
0% 'if' conditions (0/1), 1 unevaluated
100% qualifiers (0/0)
66% alternatives used (4/6)
0% local declarations used (0/6)
54% top-level declarations used (18/33)

$
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In Practice:

$ hpc markup al

tParsing

Writing: Main.hs.html

Writing: hpc_inc
Writing: hpc_inc
Writing: hpc_ind
Writing: hpc_inc

ex.html
ex_fun.html
ex_alt.html
ex_exp.html

$ open Main.hs.

Ntmll

$ open hpc_index.html

$
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number
number

Parser

Int

= manyl digit
*** foldll (\a x -> 1l0*a+x)

Coverage of altParser:

parser that evaluates arithmetic expressions:

expr,

expr

term

atom

term,

do 1 <~
do 1 <~
term

do 1 <-
do 1 <~
atom

do string
do string

number

atom ::

term;
term;

atom;
atom;

n n

Parser Int

string
string

string
string

expr;
expr;

'
A
I

term;
term;

return
return

return
return

return (negate x)
return n

string ")";

(l+rxr)
(1-x)

(1*r)
(1°div'r)
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Summary:

@ Profiling tools help us to understand the
complex operational behavior of code

@ Expert use of profiling tools requires
significant use and experience

@ But, even with limited experience, it is still
possible to gain some interesting into what
our programs really do!
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